Machine Learning for the Zwicky Transient Facility
2020-11-12, 17:00–17:30, Times in UTC

Astronomy, as many other branches of science, has been experiencing an explosive increase in the data volumes, doubling every two years or so. At the forefront of this revolution, the Zwicky Transient Facility (ZTF) – a robotic optical sky survey currently in operation at the Palomar Observatory in Southern California – performs accurate measurements of over a billion of astronomical objects and registers ~millions of transient events (such as, for example, supernova explosions, brightness changes in variable stars, or asteroid detections -- distributed to the world in real time via alert streams) in the dynamic sky every (clear) night. Machine and deep learning play an essential role in making sense of these vast quantities of data. In my talk, I will discuss the wide range of applications of machine learning in ZTF, including the astrophysical object classification, identification of near-Earth objects, detection and localization of comets, and cataloging/studying the source variability.


Theme – Machine Learning, Statistics, and Algorithms, Time-Domain Ecosystem